Lithium battery solution for portable power supply guarantee system in the field

Author: admin
Published on: 2025-05-01 00:00
Read: 0

I. Background of Portable Power Supply Assurance System in the Field
   A portable power supply for the field is a multi-functional power device that integrates charging and power storage. It is usually equipped with high-energy-density lithium-ion or lithium polymer batteries and is a mobile power supply device that can provide continuous power support for various electronic devices in the field.
   Portability: Light in weight and small in size, some small power supplies weigh only 2-3kg and can be carried with one hand. Some even come with portable handles or straps.
▲ Large capacity and high power: The capacity ranges from several hundred watt-hours to several kilowatt-hours, and the power can support simultaneous output of DC and AC, which can meet the power demands of different devices.
▲ Camping and picnic: It can power equipment such as tent lights, camping lights, electric ovens, and audio systems.
▲ Hiking and Adventure: Charge devices such as GPS navigators, walkie-talkies, and headlamps to ensure safety and smooth communication.
▲ Self-driving tour: Power the car's refrigerator, dashcam, mobile phone, laptop and other devices.
▲ Outdoor photography and live streaming: Provide stable power support for cameras, drones, live streaming equipment, etc.
▲ Emergency backup: In case of power outages, natural disasters and other sudden situations, it provides temporary power for mobile phones, flashlights, lights and other devices to ensure basic living and emergency communication.

II. Analysis of Equipment Demand Characteristics
1. Equipment application characteristics
▲ Equipment types: Outdoor tourism, rescue, exploration, etc. in plain, mountain, forest and other environments.
▲ Working environment: Temperature range, from -40℃ to +70℃, providing AC/DC electricity in high-temperature and high-humidity environments.
▲ Power demand: Large continuous/peak power and long battery life. The voltage platforms generally adopt high-voltage platforms such as 5V, 12V, 24V, 36V or 48V, as well as AC.

2. Core requirements for lithium batteries
▲ High safety: Meets the explosion-proof, shock-resistant, waterproof and anti-interference requirements of exploration equipment under harsh working conditions.
▲ Long cycle life: ≥500 times (80% capacity retention rate).
▲ Fast charging: Supports 1 to 2 hours of fast charging, suitable for high-intensity work.
▲ High-power discharge: The battery supports continuous high-current discharge, meeting the high-current requirements of high-power devices and ensuring their continuous and stable operation.
▲ Intelligent management: The BMS (Battery Management System) is equipped with functions such as overcharge protection, overdischarge protection, overcurrent protection, short-circuit protection, temperature protection, and fault diagnosis, making the battery more intelligent.
▲ Discharge temperature range: -40℃ to +70℃. In a low-temperature environment of -40℃, the battery's discharge efficiency is over 70%. A wider range of ambient temperature adaptability.
▲ Charging temperature: -20 ℃ to +50℃ range, with a wider adaptability to environmental temperatures.

III. Scheme Design
1. Battery selection
▲ Cell types: Ternary lithium batteries (ultra-low temperature, high energy density, high safety), lithium iron phosphate batteries (ultra-low temperature, high safety, long life), sodium-ion batteries (high safety, long life, good low-temperature performance). Different system cells are selected and matched according to different application scenarios.
▲ Battery combination configuration structure: Series and parallel schemes are designed based on the required voltage and capacity of the equipment to meet the requirements of different output voltage platforms.
▲ Structural design: IP65-IP68 protection grade, shock-resistant structure, explosion-proof enclosure (suitable for extreme environments or flammable and explosive environments).

2. BMS Management System
Core functions:
▲ Real-time monitoring of the voltage, temperature, SOC (State of Charge), and SOH (State of Health) of individual battery cells.
The battery charging active balancing technology enhances the consistency of usage among battery cells and extends the lifespan of the battery pack.
▲ The I2C/SMBUS/CAN/RS485 communication interface enables data interaction and communication with the main control system of the equipment.
The Coulomb computing method makes the battery SOC more accurate and the battery smarter.

3. Charging solution
▲ Charging equipment: Customized smart charger/charger/charging cabinet/solar photovoltaic, supporting constant current and constant voltage (CC-CV) charging.
▲ Charging strategy: Select fast charging or slow charging mode based on the working conditions to prevent battery overload.
▲ Intelligent control and management: Based on the technical performance characteristics of the battery, the battery charging process and fault diagnosis are intelligently controlled.

IV. Safety and Compliance
1. Safety protection
▲ Thermal management: By adopting a reasonable structural layout, thermal runaway can be reduced. Air cooling/physical cooling systems can be used (for high-power scenarios) to ensure temperature uniformity during battery use and effectively control battery thermal runaway.
▲ Fault protection: Multiple hardware protection mechanisms such as overcharge, overdischarge, short circuit, overcurrent, and over-temperature.
▲ Fault protection: Multiple hardware protection mechanisms such as short circuit, overcurrent, and over-temperature.
▲ Explosion-proof certification: The design can pass various safety regulations certifications.

2. Standard compliance
▲ It complies with national standards such as GB31241-2022 (Safety Technical Specification for Lithium-ion Batteries and Battery Packs for Portable Electronic Products), GB 17761-2024 (Safety Technical Specification for Electric Bicycles), GB/T 34131 (Lithium Batteries for Power Storage), GB 38031 (Safety Requirements for Batteries for Electric Vehicles), etc.
▲ How to obtain domestic and international certifications: GB certification, UN38.3 certification, UL certification, IEC certification, CE certification and other various certification requirements;

V. Project Implementation Plan

Number

Progress stage

                  Project content

Periodic plan

1

Demand research

Equipment parameter and working condition data collection

Within one week

2

Scheme design

Customized battery packs and BMS development

2~3weeks

3

Sample testing Charging and discharging, high and low temperature, safety protection, structural performance verification testing, design compliance verification testing

3~4weeks

4

Small-batch trial production Material preparation plan, production assembly, aging, and full inspection and testing

2~3weeks

5

Medium-batch trial production Material preparation plan, production assembly, aging, and full inspection and testing

2~3weeks

6

Mass production Material preparation plan, production assembly, aging, and full inspection and testing

4~6weeks

7

Delivery, transportation and maintenance Installation and commissioning, operation training Within one week

VI. Economic Benefit Analysis
1.In terms of cost
▲ Portable power supplies require a relatively large initial investment, but they have an absolute advantage in terms of long-term usage costs.
2. Energy-saving benefits:
▲ The charging efficiency is over 95%, which can significantly reduce energy consumption compared with AC power supply.
3. Maintenance cost:
▲ Maintenance-free design, low failure rate, and reduced personnel maintenance costs.

VII. After-sales Service
1. Warranty period: 1 to 5 years of after-sales warranty, with a lifespan of over 500 to 800 cycles (whichever comes first).
2. Remote monitoring: According to the actual demand status, the cloud platform provides real-time monitoring of the battery status and early warning of potential faults.
3. Emergency Response: Respond within 4 hours, provide solutions within 8 hours, and offer on-site technical support within 24 to 48 hours.

Hint:
▲ The plan needs to be refined based on specific equipment parameters (such as voltage, capacity, and size limitations).
▲ If special environments (such as deep Wells and coal mines) are involved, corresponding protective designs need to be added.
▲ It is recommended to conduct joint debugging with the equipment manufacturer to ensure that the battery is compatible with the entire machine system

Share

Recommended Posts